Ubiquitin recognition by FAAP20 expands the complex interface beyond the canonical UBZ domain
نویسندگان
چکیده
FAAP20 is an integral component of the Fanconi anemia core complex that mediates the repair of DNA interstrand crosslinks. The ubiquitin-binding capacity of the FAAP20 UBZ is required for recruitment of the Fanconi anemia complex to interstrand DNA crosslink sites and for interaction with the translesion synthesis machinery. Although the UBZ-ubiquitin interaction is thought to be exclusively encapsulated within the ββα module of UBZ, we show that the FAAP20-ubiquitin interaction extends beyond such a canonical zinc-finger motif. Instead, ubiquitin binding by FAAP20 is accompanied by transforming a disordered tail C-terminal to the UBZ of FAAP20 into a rigid, extended β-loop that latches onto the complex interface of the FAAP20 UBZ and ubiquitin, with the invariant C-terminal tryptophan emanating toward I44(Ub) for enhanced binding specificity and affinity. Substitution of the C-terminal tryptophan with alanine in FAAP20 not only abolishes FAAP20-ubiquitin binding in vitro, but also causes profound cellular hypersensitivity to DNA interstrand crosslink lesions in vivo, highlighting the indispensable role of the C-terminal tail of FAAP20, beyond the compact zinc finger module, toward ubiquitin recognition and Fanconi anemia complex-mediated DNA interstrand crosslink repair.
منابع مشابه
Structural Basis for Ubiquitin Recognition by Ubiquitin-Binding Zinc Finger of FAAP20
Several ubiquitin-binding zinc fingers (UBZs) have been reported to preferentially bind K63-linked ubiquitin chains. In particular, the UBZ domain of FAAP20 (FAAP20-UBZ), a member of the Fanconi anemia core complex, seems to recognize K63-linked ubiquitin chains, in order to recruit the complex to DNA interstrand crosslinks and mediate DNA repair. By contrast, it is reported that the attachment...
متن کاملHEMATOPOIESIS AND STEM CELLS FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway
Fanconi anemia (FA) nuclear core complex is a multiprotein complex required for the functional integrity of the FABRCA pathway regulating DNA repair. This pathway is inactivated in FA, a devastating genetic disease, which leads to hematologic defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP20...
متن کاملFAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway.
Fanconi anemia (FA) nuclear core complex is a multiprotein complex required for the functional integrity of the FA-BRCA pathway regulating DNA repair. This pathway is inactivated in FA, a devastating genetic disease, which leads to hematologic defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP2...
متن کاملStructure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase Z
The ubiquitin-binding zinc finger (UBZ) domain of human DNA Y-family polymerase (pol) g is important in the recruitment of the polymerase to the stalled replication machinery in translesion synthesis. Here, we report the solution structure of the pol g UBZ domain and its interaction with ubiquitin. We show that the UBZ domain adopts a classical C2H2 zinc-finger structure characterized by a bba ...
متن کاملA novel mode of ubiquitin recognition by the ubiquitin-binding zinc finger domain of WRNIP1.
UNLABELLED The ubiquitin-binding zinc finger (UBZ) is a type of zinc-coordinating β-β-α fold domain found mainly in proteins involved in DNA repair and transcriptional regulation. Here, we report the crystal structure of the UBZ domain of Y-family DNA polymerase (pol) η and the crystal structure of the complex between the UBZ domain of Werner helicase-interacting protein 1 (WRNIP1) and ubiquiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014